2008年5月9日星期五

Chemist Leo Baekeland

[1] In the opening scene of The Graduate, Benjamin Braddock (played by a young Dustin Hoffman) is awkwardly working an affluent Southern California crowd at a graduation party arranged for him by his parents when a family friend offers one of the century's most famous pieces of cine-matic advice: "I just want to say one word to you. Just one word: plastics."

[2] Millions of moviegoers winced and smiled. The scene neatly captured their own late '60s ambivalence toward the ever more synthetic landscape of their times. They loved their cheap, easy- to-clean Formica countertops, but envied-and longed for-the authentic touch and time-lessness of marble and wood. The chord struck by that line in The Graduate under-scored how much had happened in the six decades since the summer of 1907, when Leo Baekeland made the laboratory break-through that would change the stuff our world is made of.

[3] A Belgian-horn chemist-entrepreneur, Baekeland had a knack for spotting profitable opportunities. He scored his first success in the 1890s with his invention of Velox, an improved photographic paper that freed photographers from having to use sunlight for developing images. With Velox, they could rely on artificial light, which at the time usually meant gaslight but soon came to mean electric. It was a far more dependable and convenient way to work. In 1899 George Eastman, whose cameras and developing services would make photogra-phy a household activity, bought full rights to Velox for the then astonishing sum of $ 1 million.

[4] With that windfall, Baekeland, his wife Celina(known as "Bonbon") and two children moved to Snug Rock, a pala-tial estate north of Yonkers, N.Y., over-looking the Hudson River. There, in a barn be converted into a lab, he began foraging for his next big hit. It wasn't long before the burgeoning electrical industry seemed to say just one word to him: insulators.

[5] The initial tease for Baekeland----"Doc Baekeland" to many-was the rising cost of shellac. For centuries, the resinous secretions that Laccifer lacca beetles de-posited on trees had provided a cottage in-dustry in southern Asia, where peasants heated and filtered it to produce a varnish for coating and preserving wood products. Shellac also happened to be an effective electrical insulator. Early electrical workers used it as a coating to insulate coils, and molded it into stand-alone insulators by pressing together layers of shellac-impreg-nated paper.

[6] When electrification began in earnest in the first years of the century, de-mand for shellac soon outstripped supply. Baekeland recognized a killer ap when he saw one. If only he could come up with a synthetic substitute for shellac.

[7] Others nearly beat him to it. As early as 1872, German chemist Adolf Von Baeyer was investigating the recalcitrant residue that gathered in the bottom of glass-ware that had been host to reactions be-tween phenol (a turpentine-like solvent dis-tilled from coal tar, which the gas-lighting industry produced in bulk) and formalde-hyde (an embalming fluid distilled from wood alcohol). Von Baeyer set his sights on new synthetic dyes, however, not insulators. To him, the ugly, insoluble gunk in his glassware was a sign of a dead end.

[8] To Baekeland and others aiming to find commercial opportunities in the nascent electrical industry, that gunk was a signpost pointing toward something great. The chal-lenge for Baekeland and his rivals was to find some set of conditions----some slippery ratio of ingredients and heat and pressure that would yield a more workable, shellac-like substance. Ideally it would be some-thing that would dissolve in solvents to make insulating varnishes and yet be as moldable as rubber.

没有评论: